Multiple-point hit distribution functions and vague convergence of related measures

Felix Ballani

Version: December 17, 2008

Abstract

For a stationary and isotropic random closed set Z in \mathbb{R}^d it is a well-known fact that its covariance $C(t)$ and its spherical contact distribution function $\tilde{H}_B(t)$ admit at $t = 0$ a derivative which is a multiple of the surface intensity of Z. Within the quite general setting of gentle sets, Kiderlen and Rataj [10] show a more general result (covering both previous cases) for the derivative of a hit distribution function of Z with respect to a structuring element which only needs to be compact and should contain the origin. Using this general setting we introduce m-point hit distribution functions of Z, $m \geq 2$, and show how they are related to the mth-order surface product density of Z. This also generalizes a result of Ballani [1] for the two-point spherical contact distribution function of a germ-grain model.

Keywords: random closed set, gentle set, covariance, contact distribution, hit distribution, rose of directions, surface intensity, surface product density

2000 Mathematics Subject Classification: 60D05, 60G57

1 Introduction

For the description and analysis of random closed sets Z in \mathbb{R}^d ($d \geq 2$) different characteristics are fundamental, and it turns out that these characteristics are often interrelated in a surprising way.

It is a well-known fact [13, p. 204] that for a stationary and isotropic random closed set Z the covariance $C(t) = \mathbb{P}(0 \in Z, q \in Z)$, $t = \|q\|$, $q \in \mathbb{R}^d$, admits at $t = 0$ a derivative

$$C'(0) = -\frac{b_{d-1}}{db_d} S_d^{(d)},$$

(1)

where $S_d^{(d)}$ is the surface intensity [13, p. 76] of Z and b_d is the volume of the Euclidean unit ball B^d in \mathbb{R}^d. Since $C(t)$ can often not be expressed analytically, relationship (1) serves as the starting point for an exponential approximation of $C(t)$, see [13, 3].

In physics of porous media relationship (1) plays an important role since it is considered as a geometric constraint that must be obeyed by any physically realizable covariance [14, 5]. A heuristic explanation of (1), i.e. for the stationary and isotropic case, was already given by Delbye et al. [4] in 1957. Berryman [2, Equation (7)] generalized (1) to the stationary and anisotropic case by replacing $C(t)$ with the angular average $\int C(tw) \sigma_{d-1}/(db_d)$, where σ_{d-1} is the spherical Lebesgue measure. So far, due to averaging over all directions no directional information was taken into account. Only recently, Kiderlen and Jensen [9, Theorem 4] in dimension $d = 2$, and Gokhale et al. [5, Equation (20)] gave an according result which (in principle) relates for any unit vector w the directional derivative of $C(tw)$ at $t = 0$ to the surface intensity $S_d^{(d)}$. More precisely, they state that

$$\frac{\partial}{\partial t} \bigg|_{t=0} \mathbb{P}(0 \notin Z, tw \in Z) = \frac{S_d^{(d)}}{2} \int_{S_{d-1}} |\langle w, n \rangle| \mathcal{R}(dn)$$

(2)

for the case that the rose of directions of outer normal vectors \mathcal{R} of Z is even. Here, S_{d-1} denotes the unit sphere in \mathbb{R}^d, and $\langle \cdot, \cdot \rangle$ is the usual scalar product in \mathbb{R}^d.

The contact distribution functions [13, 6, 11, 7] $\tilde{H}_B(t) = \mathbb{P}(o \in Z \oplus tB \mid o \notin Z)$, $t \geq 0$, of a stationary random closed set Z with respect to the convex compact structuring element

1Institut für Mathematische Stochastik, Georg-August-Universität Göttingen, Goldschmidtstr. 7, D-37077 Göttingen, Germany, ballani@math.uni-goettingen.de
$B \subset \mathbb{R}^d$, having the origin in its interior, also admit at $t = 0$ a (right-hand) derivative. For example, for the spherical contact distribution function $\tilde{H}_s = \tilde{H}_{B^d}$ it is well known [13, Equation (6.2.4)] that

$$(1 - V_V^{(d)}) \tilde{H}_s'(0) = S_V^{(d)},$$

where $V_V^{(d)} = \mathbb{P}(o \in Z)$ is the volume fraction of Z. Here, \oplus denotes Minkowski addition.

Up to the sign the similarity of (1) and (3) might be surprising for the first moment, nevertheless, as Kiderlen and Rataj [10] show, both relationships can be integrated in a more universally valid relationship. They do this for random closed sets which are almost surely gentle sets, which is a quite general class of sets containing, e.g., the extended convex ring. For a compact set $B \subset \mathbb{R}^d$ with $o \in B$ they introduce the hit distribution function $H_B(x,t) = \mathbb{P}(x \in Z \oplus tB \mid x \notin Z)$, which coincides with the contact distribution function \tilde{H}_B if B is star-shaped with respect to the origin. If Z is stationary they show, writing then $H_B(t) = H_B(a,t)$, that

$$(1 - V_V^{(d)}) \frac{\partial}{\partial t} \bigg|_{t = 0^+} H_B(t) = S_V^{(d)} \int_{S^{d-1}} h(\hat{B}, u)\mathcal{R}(du),$$

where $h(B, \cdot)$ is the support function of the convex hull of B, and $\hat{B} = -B$. Inserting $B = \{o, w\}$, $w \in S^{d-1}$, in (4) yields (2) since

$$\mathbb{P}(0 \notin Z, tw \in Z) = \mathbb{P}(o \notin Z)\mathbb{P}(o \in Z \oplus t[-w, o] \mid o \notin Z).$$

In [1] Ballani introduces the two-point spherical contact distribution function (there denoted as second-order spherical contact distribution function) at $(x_1, x_2) \in \mathbb{R}^d \times \mathbb{R}^d$ by

$$H_s^{(2)}(x_1, t_1, x_2, t_2) = \mathbb{P}(x_1 \in Z \oplus t_1 B^d, x_2 \in Z \oplus t_2 B^d \mid x_1 \notin Z, x_2 \notin Z)$$

and shows that under certain conditions $H_s^{(2)}(x_1, t_1, x_2, t_2)$ admits a second partial right-hand derivative at $(t_1, t_2) = (0, 0)$ which is related to the second-order surface product density $\varrho_S^{(2)}(x_1, x_2)$ of Z via

$$\mathbb{P}(x_1 \notin Z, x_2 \notin Z) \frac{\partial}{\partial t_2} \bigg|_{t_2 = 0^+} \frac{\partial}{\partial t_1} \bigg|_{t_1 = 0^+} H_s^{(2)}(x_1, t_1, x_2, t_2) = \varrho_S^{(2)}(x_1, x_2).$$

The second-order surface product density can be seen as the second-order analogue of the surface intensity and is defined as the Radon-Nikodým derivative (if it exists) of the second-order moment measure of the random surface measure $\mathcal{H}^{d-1}(\cdot \cap \partial Z)$ of Z, where \mathcal{H}^k is the k-dimensional Hausdorff measure.

Using the approach and the setting of Kiderlen and Rataj [10] we show that at least the weaker relationship

$$(t_1, t_2)^{-1}\mathbb{P}(x_1 \notin Z, x_2 \notin Z) H_s^{(2)}_{B_1, B_2}(x_1, t_1, x_2, t_2) \mathcal{H}^{2d}(d(x_1, x_2))$$

$$\rightharpoonup \varrho_S^{(2)}(x_1, x_2) \int \mathcal{H}^{2d}(d(x_1, x_2))$$

as $(t_1, t_2) \to (0^+, 0^+)$ holds for compact $B_1, B_2 \subset \mathbb{R}^d$ with $o \in B_1, B_2$, where \rightharpoonup denotes the vague convergence of measures and $\mathcal{R}^{(2)}(x_1, x_2, \cdot)$ (as the second-order analogue of \mathcal{R}) is the joint conditional distribution of the outer normals at x_1 and x_2 under the condition that $x_1, x_2 \in \partial Z$. In particular, we obtain for $w_1, w_2 \in S^{d-1}$

$$(t_1, t_2)^{-1}\mathbb{P}(x_1 \notin Z, x_1 + t_1 w_1 \notin Z, x_2 \notin Z, x_2 + t_2 w_2 \notin Z) \mathcal{H}^{2d}(d(x_1, x_2))$$

$$\rightharpoonup \varrho_S^{(2)}(x_1, x_2) \int \mathcal{H}^{2d}(d(x_1, x_2))$$

where $a^+ = \max\{0, a\}$ is the positive part of $a \in \mathbb{R}$. 2
2 Definitions

We use the same setting and notation as in [10]. In order to make our paper more readable we repeat the most important definitions.

The exoskeleton \(\text{exo}(A)\) of a closed set \(A \subseteq \mathbb{R}^d\) is the set of all \(z \in \mathbb{R}^d \setminus A\) which do not have a unique nearest point in \(A\) (with respect to Euclidean distance). The metric projection \(\xi_A : \mathbb{R}^d \setminus \text{exo}(A) \to A\) maps \(a \in \mathbb{R}^d \setminus \text{exo}(A)\) to its unique nearest point \(\xi_A(a)\) in \(A\). The set

\[
N(A) := \left\{ \left(\xi_A(z), \frac{z - \xi_A(z)}{\|z - \xi_A(z)\|} \right) : z \notin A \cup \text{exo}(A) \right\}
\]

is called the normal bundle of \(A\). \(\| \cdot \|\) denotes Euclidean norm. \(N(A)\) is a measurable subset of \(\partial A \times \mathbb{S}^{d-1}\). The reach function \(\delta(A; \cdot) : \mathbb{R}^d \times \mathbb{S}^{d-1} \to [0, \infty)\) of \(A\) is defined by

\[
\delta(A; a, n) := \inf \{ t \geq 0 : a + tn \in \text{exo}(A) \}.
\]

\(\delta(A; \cdot)\) is positive on \(N(A)\). Furthermore, \(C_{d-1}(A; \cdot)\) is the image measure of \(\mathcal{H}^{d-1}\) on \(\partial A\) under the mapping \(a \mapsto (a, n(A; a))\), where \(n(A; a)\) is the \(\mathcal{H}^{d-1}\)-almost everywhere defined unique outer normal vector at \(a\) satisfying \((a, n(A; a)) \in N(A)\).

A closed set \(A \subseteq \mathbb{R}^d\) is said to be gentle [10] if, for all bounded Borel sets \(B \subseteq \mathbb{R}^d\), \(\mathcal{H}^{d-1}(N(\partial A) \cap (B \times \mathbb{S}^{d-1})) < \infty\), and, for \(\mathcal{H}^{d-1}\)-almost all \(a \in \partial A\), there are non-degenerate balls \(B_i\) and \(B_a\) containing both \(a\) with \(B_i \subseteq A\) and \(\text{int} B_a \subseteq \mathbb{R}^d \setminus A\).

3 Dilatation- and erosion-volumes

Proposition 3.1 ([10]). If \(A\) is a closed gentle set then there are uniquely determined signed measures \(\mu_0(\partial A; \cdot), \ldots, \mu_{d-1}(\partial A; \cdot)\) on \(\mathbb{R}^d \times \mathbb{S}^{d-1}\), vanishing outside \(N(\partial A)\), with the following property:

For any measurable bounded function \(f\) on \(\mathbb{R}^d\) with compact support, we have

\[
\int_{\mathbb{R}^d} f(z) \mathcal{H}^d(dz) = \sum_{i=1}^d i b_i \int_{N(\partial A)} \int_0^\infty t^{i-1} f(a + tn) \, dt \, \mu_{d-1}(\partial A; d(a, n)).
\]

(8)

In particular we have

\[
2 \mu_{d-1}(\partial A; \cdot) = C_{d-1}(A; \cdot) + C_{d-1}^*(A; \cdot),
\]

(9)

where \(C_{d-1}^*(A; \cdot)\) is the image measure of \(C_{d-1}(A; \cdot)\) under the reflection \((a, n) \mapsto (a, -n)\).

Given a compact subset \(M\) of \(\mathbb{R}^d\), denote by \(\tilde{M} = \{-x : x \in M\}\) the reflection of \(M\) and let

\[
h(M, u) = h(\text{conv} M, u) = \sup \{ \langle y, u \rangle : y \in M \}
\]

be the support function of \((\text{the convex hull of})\ M\).

The following theorem is a straightforward generalization of Theorem 1 in [10] to our situation. Though in the remainder of this paper we will only use some special cases we state this theorem for the same general structuring as in [10, Theorem 1].

Theorem 3.1. Let \(A\) be a closed gentle set, \(m \geq 1\) an integer, \(C \subset (\mathbb{R}^d)^m\) a bounded Borel set and \(B_k, W_k\) and \(P_k, Q_k\), \(k = 1, \ldots, m\), \(4m\) non-empty compact subsets of \(\mathbb{R}^d\). For \(\varepsilon > 0\) set

\[
g_{k, \varepsilon}(z) = 1_{\{z + \varepsilon B_k \subseteq A \oplus \varepsilon P_k\}} 1_{\{z + \varepsilon W_k \cup (A \ominus \varepsilon Q_k)\}}, \quad k = 1, \ldots, m.
\]

Then

\[
\lim_{\varepsilon_1, \ldots, \varepsilon_m \to 0} \prod_{k=1}^m \varepsilon_k^{-1} \int_{\mathbb{R}^d} \ldots \int_{\mathbb{R}^d} \mathbf{1}_C(z_1, \ldots, z_m) \prod_{k=1}^m g_{k, \varepsilon}(z_k) \mathcal{H}^d(dz_1) \cdots \mathcal{H}^d(dz_m)
\]

\[
= 2^m \int_{N(A)} \ldots \int_{N(A)} \mathbf{1}_C(a_1, \ldots, a_m) \prod_{k=1}^m \left(h(P_k + \hat{Q}_k, n_k) - h(B_k \oplus W_k, n) \right)^+ \times C_{d-1}(A; d(a_1, n_1)) \cdots C_{d-1}(A; d(a_m, n_m)).
\]

(10)
Proof. The proof uses ideas from the proofs of Theorem 1 in [10] and Theorem 3.1 in [1]. Since the case $m = 1$ was proved in [10, Theorem 1] we assume $m \geq 2$ in what follows. It can be assumed without loss of generality that $B_k \cup W_k \cup P_k \cup Q_k$ is contained in the ball $B(o,1/2)$ for all $k \in \{1, \ldots, m\}$. We iteratively apply Proposition 3.1, first to the function $f_1(z_1, \ldots, z_m)$,

$$f_1(z_1, \ldots, z_m) = \begin{cases} 1_C(\xi \partial A(z_1), \ldots, \xi \partial A(z_m)) g_{1; \varepsilon_1}(z_1), & z_1 \notin \text{exo}(\partial A), \\ 0, & z_1 \in \text{exo}(\partial A), \end{cases}$$

giving

$$\int_{\mathbb{R}^d} \ldots \int_{\mathbb{R}^d} 1_C(\xi \partial A(z_1), \ldots, \xi \partial A(z_m)) \prod_{k=1}^m g_{k; \varepsilon_k}(z_k) \mathcal{H}^d(dz_1) \cdots \mathcal{H}^d(dz_m)$$

$$= \int_{\mathbb{R}^d} \ldots \int_{\mathbb{R}^d} f(z_1, \ldots, z_m) \mathcal{H}^d(dz_1) \cdots \mathcal{H}^d(dz_m)$$

$$= \sum_{j_1=1}^m j_1 b_1 \int_{\mathbb{R}^d} \ldots \int_{\mathbb{R}^d} \delta(\partial A; a_1, n_1) \prod_{k=2}^m \mu_{d-j_1}(\partial A; d(a_1, n_1)) \mathcal{H}^d(dz_2) \cdots \mathcal{H}^d(dz_m)$$

$$= \sum_{j_1=1}^m j_1 b_1 \int_{\mathbb{R}^d} \ldots \int_{\mathbb{R}^d} \delta(\partial A; a_1, n_1) \prod_{k=2}^m \mu_{d-j_1}(\partial A; d(a_1, n_1))$$

$$\times g_{k; \varepsilon_k}(a_1 + t_1 n_1) \prod_{k=2}^m g_{k; \varepsilon_k}(z_k) \mathcal{H}^d(dz_2) \cdots \mathcal{H}^d(dz_m)$$

and then for $k = 2, \ldots, m$ to $f_k(\ldots, z_k, \ldots)$,

$$f_k(a_1, \ldots, a_{k-1}, z_k, \ldots, z_m) = \begin{cases} 1_C(a_1, \ldots, a_{k-1}, \xi \partial A(z_k), \ldots, \xi \partial A(z_m)) g_{k; \varepsilon_k}(z_k), & z_k \notin \text{exo}(\partial A), \\ 0, & z_k \in \text{exo}(\partial A), \end{cases}$$

finally giving

$$\int_{\mathbb{R}^d} \ldots \int_{\mathbb{R}^d} 1_C(\xi \partial A(z_1), \ldots, \xi \partial A(z_m)) \prod_{k=1}^m g_{k; \varepsilon_k}(z_k) \mathcal{H}^d(dz_1) \cdots \mathcal{H}^d(dz_m)$$

$$= \sum_{j_1=1}^m j_1 b_1 \ldots \sum_{j_m=1}^m j_m b_m \int_{\mathbb{R}^d} \ldots \int_{\mathbb{R}^d} \delta(\partial A; a_1, n_1) \cdots \delta(\partial A; a_m, n_m) \prod_{k=1}^m \mu_{d-j_1}(\partial A; d(a_1, n_1)) \cdots \mu_{d-j_m}(\partial A; d(a_m, n_m))$$

$$\times \mu_{d-j_1}(\partial A; d(a_1, n_1)) \cdots \mu_{d-j_m}(\partial A; d(a_m, n_m))$$

where we have also tacitly used Fubini’s theorem (which can be applied because of (2.25) in [8]). For each $k \in \{1, \ldots, m\}$ we have that $|g_{k; \varepsilon_k}|$ is bounded by 1 and since $B_k \neq \emptyset$ and P_k are contained in $B(o,1/2)$, the support of $g_{k; \varepsilon_k}$ is contained in $A \oplus B(o,\varepsilon_k)$. Furthermore, since $C \subset (\mathbb{R}^d)^m$ is bounded, there are bounded Borel sets $C_1, \ldots, C_m \subset \mathbb{R}^d$ such that
$C \subseteq C_1 \times \ldots \times C_m$. Hence we have

$$\left| \int_{N(\partial A)} \delta(\partial A, a_1, n_1) \cdots \int_{N(\partial A)} \delta(\partial A, a_m, n_m) \sum_{k=1}^{m} \frac{\mu_{d-j_k}(\partial A; d(a_k + t_k n_k))}{\varepsilon_k} \cdots \mu_{d-j_m}(\partial A; d(a_m, n_m)) \right|$$

$$\leq \prod_{k=1}^{m} \varepsilon_k^{-1} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \int_{N(\partial A)} \int_{N(\partial A)} 1_{C_1}(a_1, \ldots, a_m) \prod_{k=1}^{m} \frac{\mu_{d-j_k}(\partial A; d(a_k + t_k n_k))}{\varepsilon_k} \cdots \mu_{d-j_m}(\partial A; d(a_m, n_m)) \cdots \mu_{d-j_m}(\partial A; d(a_m, n_m)) \cdots \|\mu_{d-j_m}(\partial A; d(a_m, n_m))\| dt_1 \cdots dt_m$$

and the total variation measure $|\mu_{d-j_k}(\partial A; C_k \times S^{d-1})|$ is finite for any j_k since C_k is bounded. Thus the last expression tends to 0 as $(\varepsilon_1, \ldots, \varepsilon_m) \to (0^+, \ldots, 0^+)$ whenever there is a $k \in \{1, \ldots, m\}$ with $j_k > 1$. This implies

$$\lim_{\varepsilon_1, \ldots, \varepsilon_m \to 0^+} \prod_{k=1}^{m} \varepsilon_k^{-1} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \int_{N(\partial A)} \int_{N(\partial A)} 1_{C_1}(z_1, \ldots, z_m) \prod_{k=1}^{m} g_{k;\varepsilon}(z_k) |\mathcal{H}^d(dz_1) \cdots \mathcal{H}^d(dz_m)|$$

$$= 2^m \lim_{\varepsilon_1, \ldots, \varepsilon_m \to 0^+} \int_{N(A)} \int_{N(A)} \int_{N(A)} 1_{C}(a_1, \ldots, a_m) \prod_{k=1}^{m} \frac{g_{k;\varepsilon}(a_k + t_k n_k)}{\varepsilon_k} dt_k$$

$$\times \mu_{d-j_1}(\partial A; d(a_1, n_1)) \cdots \mu_{d-j_m}(\partial A; d(a_1, n_1))$$

$$= 2^m \lim_{\varepsilon_1, \ldots, \varepsilon_m \to 0^+} \int_{N(A)} \int_{N(A)} \int_{N(A)} 1_{C}(a_1, \ldots, a_m) \prod_{k=1}^{m} G_{k;\varepsilon}(a_k, n_k)$$

$$\times \mu_{d-j_1}(\partial A; d(a_1, n_1)) \cdots \mu_{d-j_m}(\partial A; d(a_1, n_1))$$

where we have used (9), $N(A) \subseteq N(\partial A)$ and the abbreviation

$$G_{k;\varepsilon}(a_k, n_k) = \int_{\delta(\partial A, a_k, n_k)} \frac{g_{k;\varepsilon}(a_k + t_k n_k)}{\varepsilon_k} dt_k, \quad k = 1, \ldots, m.$$

From [10, (11)] we have

$$G_{k;\varepsilon}(a_k, n_k) \to (h(P_k \oplus Q_k, n_k) - h(Q_k \oplus W_k, n_k))^+, \quad \varepsilon_k \to 0^+.$$

Since $G_{k;\varepsilon}(z_k) \leq 1_{(A \ominus B(z_k)) \cap (A^* \ominus B(z_k))}(z_k)$ for all $k \in \{1, \ldots, m\}$ implies

$$0 \leq 1_{C}(a_1, \ldots, a_m) \prod_{k=1}^{m} G_{k;\varepsilon}(a_k, n_k) \leq 1_{C}(a_1, \ldots, a_m) \prod_{k=1}^{m} \frac{1}{\varepsilon_k} \int_{\delta(\partial A, a_k, n_k)} 1_{\{x_k \leq t_k \leq \varepsilon_k\}} dt_k$$

$$\leq 2^m 1_{C}(a_1, \ldots, a_m)$$

which yields a uniformly integrable upper bound, the proof is completed by applying Lebesgue’s dominated convergence theorem.

\[\Box \]

Remark 3.1. Note that the assertion of Theorem 3.1 using the limit $\lim_{\varepsilon_1, \ldots, \varepsilon_m \to 0^+}$ is stronger than using the iterated limit $\lim_{\varepsilon_1 \to 0^+} \ldots \lim_{\varepsilon_m \to 0^+}$. Clearly, using this iterated limit instead, an analogous assertion to Theorem 3.1 can be proved by simply applying Theorem 1 in [10] m times.
Corollary 3.1. Let A be a closed gentle set, $m \geq 1$ an integer, $C \subset (\mathbb{R}^d)^m$ a bounded Borel set. Fix non-empty compact subsets B_k, $k = 1, \ldots, m$, of \mathbb{R}^d. Then

$$
\lim_{\varepsilon_1, \ldots, \varepsilon_m \to 0^+} \prod_{k=1}^m \varepsilon_k^{-1} \int \cdots \int 1_C(z_1, \ldots, z_m) \prod_{k=1}^m 1_{[A \subset \varepsilon_k B_k] \setminus A}(z_k) \mathcal{H}^d(dz_1) \cdots \mathcal{H}^d(dz_m)
$$

$$= 2^m \int_{N(A)} \cdots \int_{N(A)} 1_C(a_1, \ldots, a_m) \prod_{k=1}^m h^+(B_k, n)
$$

$$\times C_{d-1}(A; d(a_1, u_1)) \cdots C_{d-1}(A; d(a_m, n_m))
$$

$$= 2^m \int_{N(A)} \cdots \int_{N(A)} 1_C(a_1, \ldots, a_m) \prod_{k=1}^m h(B_k \cup \{o\}, n)
$$

$$\times C_{d-1}(A; d(a_1, u_1)) \cdots C_{d-1}(A; d(a_m, n_m)),
$$

(11)

4 m-point hit distribution functions

We will need the following integrability condition: We require that

$$E \left[\prod_{k=1}^m \mathcal{H}^{d-1}(N(\partial Z) \cap D_k \times S^{d-1}) \right] < \infty
$$

(12)

holds for all bounded Borel sets $D_k \subset \mathbb{R}^d$, $k = 1, \ldots, m$.

If (12) holds, then $\Lambda_{d-1}^{(m)}$, defined by

$$\Lambda_{d-1}^{(m)}(D_1 \times \cdots \times D_m) = E \left[\prod_{k=1}^m C_{d-1}(Z; D_k) \right], \quad D_1, \ldots, D_m \subset \mathbb{R}^d \times S^{d-1} \text{ Borel},
$$

is a locally finite (nonnegative) measure, concentrated on $(\mathbb{R}^d \times S^{d-1})^m$. It is called the mth-order moment measure of $C_{d-1}(Z; \cdot)$. A disintegration of this measure yields

$$\Lambda_{d-1}^{(m)}(d(z_1, n_1, \ldots, z_m, n_m)) = \mathcal{R}^{(m)}(z_1, \ldots, z_m, d(n_1, \ldots, n_m)) \Lambda_{d-1}^{(m)}(dz_1 \times S^{d-1} \times \cdots \times dz_m \times S^{d-1}),
$$

(13)

where $\mathcal{R}^{(m)}$ is a stochastic kernel from $(\mathbb{R}^d)^m$ to $(S^{d-1})^m$. $\mathcal{R}^{(m)}$ can be interpreted as a joint conditional directional distribution in the sense of a m-point mark distribution [13, p. 114], where the marks are outer normal vectors from S^{d-1}.

Let

$$v^{(m)}(z_1, \ldots, z_m) = P(z_1 \notin Z, \ldots, z_m \notin Z)
$$

be the m-point void probability of Z at $z_1, \ldots, z_m \in \mathbb{R}^d$, and fix arbitrary compact sets $B_1, \ldots, B_m \subset \mathbb{R}^d$ with $o \in B_k$, $k = 1, \ldots, m$. If $v^{(m)}(z_1, \ldots, z_m) > 0$, then the m-point hit distribution function at (z_1, \ldots, z_m) with structuring elements B_1, \ldots, B_m is defined by

$$H^{(m)}_{B_1, \ldots, B_m}(z_1, t_1, \ldots, z_m, t_m) = P(z_1 \in Z \oplus t_1 \bar{B}_1, \ldots, z_m \in Z \oplus t_m \bar{B}_m \mid z_1 \notin Z, \ldots, z_m \notin Z).
$$

For $v^{(m)}(z_1, \ldots, z_m) = 0$, we set $H^{(m)}_{B_1, \ldots, B_m}(z_1, t_1, \ldots, z_m, t_m) = 1$.

Theorem 4.1. Let $m \geq 1$ be an integer, and let $B_k, \subset \mathbb{R}^d$, $k = 1, \ldots, m$, be non-empty compact sets with $o \in B_1, \ldots, B_m$. Let Z be a.s. a gentle set such that (12) holds for all bounded Borel sets $D_1, \ldots, D_m \subset \mathbb{R}^d$. Then

$$\prod_{k=1}^m t_k^{-1} v^{(m)}(z_1, \ldots, z_m) H^{(m)}_{B_1, \ldots, B_m}(z_1, t_1, \ldots, z_m, t_m) \mathcal{H}^{md}(d(z_1, \ldots, z_m))
$$

$$= \frac{2^m}{v^{(m)}} \int_{(S^{d-1})^m} \prod_{k=1}^m h(\bar{B}_k, n_k) \mathcal{R}^{(m)}(z_1, \ldots, z_m, d(n_1, \ldots, n_m))
$$

$$\times \Lambda_{d-1}^{(m)}(dz_1 \times S^{d-1} \times \cdots \times dz_m \times S^{d-1}),
$$

(14)

6
as \((t_1, \ldots, t_m) \to (0^+, \ldots, 0^+),\) where \(\Rightarrow\) denotes the vague convergence of measures.

Proof. The proof uses ideas from the proof of [10, Theorem 4]. Without loss of generality, we may assume that \(B_1, \ldots, B_m \subseteq B(o, 1)\). If \(g : (\mathbb{R}^d)^m \to \mathbb{R}\) is a continuous function with compact support, we have

\[
\int_{(\mathbb{R}^d)^m} g(z_1, \ldots, z_m) \mathcal{H}^m(z_1, \ldots, z_m) \mathcal{H}^m(d(z_1, \ldots, z_m)) = \mathbb{E} \left[\int_{(\mathbb{R}^d)^m} g(z_1, \ldots, z_m) \prod_{k=1}^m 1_{[Z \oplus t_k \cdot B_k] \setminus Z}(z_k) \mathcal{H}^m(d(z_1, \ldots, z_m)) \right]
\]

\[
= \mathbb{E} \left[\int_{(\mathbb{R}^d)^m} (g(z_1, \ldots, z_m) - g(\xi_0 z_1, \ldots, \xi_0 z_m)) \prod_{k=1}^m 1_{[Z \oplus t_k \cdot B_k] \setminus Z}(z_k) \mathcal{H}^m(d(z_1, \ldots, z_m)) \right]
\]

\[
+ \mathbb{E} \left[\int_{(\mathbb{R}^d)^m} g(\xi_0 z_1, \ldots, \xi_0 z_m) \prod_{k=1}^m 1_{[Z \oplus t_k \cdot B_k] \setminus Z}(z_k) \mathcal{H}^m(d(z_1, \ldots, z_m)) \right]
\]

\[
= R_1(t_1, \ldots, t_m) + R_2(t_1, \ldots, t_m).
\]

If \(z_k \in [Z \oplus t_k \cdot B_k] \setminus Z\), then \(z_k \in [Z \oplus B(o, t_k)] \setminus Z\), and thus \(|z_k - \xi_0 z_k| = t_k, k = 1, \ldots, m\), and \(|(z_1, \ldots, z_m) - (\xi_0 z_1, \ldots, \xi_0 z_m)| \leq \|(t_1, \ldots, t_m)\|\). Denote the support of \(g\) by \(\text{supp}\ g\).

Since \(g\) is compact there are compact sets \(D_1, \ldots, D_m \subseteq \mathbb{R}^d\) such that \(\text{supp}\ g \subseteq D_1 \times \ldots \times D_m\). Define the compact sets \(D_k = D_k \oplus B(o, 1), k = 1, \ldots, m\). As \(g\) is uniformly continuous, there is \(0 < t_\varepsilon \leq 1\) such that \(|g(z_1, \ldots, z_m) - g(\xi_0 z_1, \ldots, \xi_0 z_m)| \leq \varepsilon\) for all \((z_1, \ldots, z_m) \in ([Z \oplus t \cdot B_1] \setminus Z) \times \ldots \times ([Z \oplus t \cdot B_1] \setminus Z)\) whenever \(|(t_1, \ldots, t_m)| < t_\varepsilon\). For these \((t_1, \ldots, t_m)\), from Proposition 3.1 we have

\[
|R_1(t_1, \ldots, t_m)| \leq \varepsilon \mathbb{E} \left[\prod_{k=1}^m \mathcal{H}^d(\xi_0^{-1}(D_k) \cap [Z \oplus t_k \cdot B_k] \setminus Z) \right]
\]

\[
\leq \varepsilon \mathbb{E} \left[\prod_{k=1}^m \sum_{j_k=1}^d b_{j_k} \int_{N(\partial Z)} 1_{D_k}(a_k) \int_0^{t_k} s_{k}^{j_k-1} ds_k |\partial Z; d(a_k, n_k)| \right]
\]

\[
\leq \varepsilon \mathbb{E} \left[\prod_{k=1}^m \sum_{j_k=1}^d b_{j_k} \int_{N(\partial Z)} 1_{D_k \times S^{d-1}}(\partial Z; d(a_k, n_k)) \right]
\]

Hence we have

\[
\frac{|R_1(t_1, \ldots, t_m)|}{t_1 \cdot \ldots \cdot t_m} \leq \varepsilon \mathbb{E} \left[\prod_{k=1}^m \sum_{j_k=1}^d b_{j_k} \int_{N(\partial Z)} 1_{D_k \times S^{d-1}}(\partial Z; d(a_k, n_k)) \right].
\]

In view of [8, (2.13) and Corollary 2.5] and (12), the expectation on the right-hand side is finite, and since \(\varepsilon > 0\) was arbitrary, we obtain

\[
\frac{|R_1(t_1, \ldots, t_m)|}{t_1 \cdot \ldots \cdot t_m} \to 0
\]

as \((t_1, \ldots, t_m) \to (0^+, \ldots, 0^+)\). According to Corollary 3.1, the integral in \(R_2(t_1, \ldots, t_m)\) satisfies

\[
\prod_{k=1}^m t_k^{-1} \int_{(\mathbb{R}^d)^m} g(\xi_0 z_1, \ldots, \xi_0 z_m) \prod_{k=1}^m 1_{[Z \oplus t_k \cdot B_k] \setminus Z}(z_k) \mathcal{H}^m(d(z_1, \ldots, z_m))
\]

\[
= 2^m \int_{N(Z)} \ldots \int_{N(Z)} g(z_1, \ldots, z_m) \prod_{k=1}^m h(B_k, n_k) C_{d-1}(Z, d(z_1, n_1)) \ldots C_{d-1}(Z, d(z_m, n_m))
\]
as \((t_1, \ldots, t_m) \to (0^+, \ldots, 0^+)\). In view of the dominating terms in the proof of Theorem
3.1 and (12), Lebesgue’s dominated convergence theorem allows us to interchange limit and
expectation, and we get

\[
\lim_{t_1, \ldots, t_m \to 0^+} \prod_{k=1}^m t_k^{-1} \int_{(\mathbb{R}^d)^m} g(z_1, \ldots, z_m) v^{(m)}(z_1, \ldots, z_m) H^{(m)}_{t_1, \ldots, t_m}(z_1, t_1, \ldots, z_m, t_m) \\
\times \mathcal{H}^m(d(z_1, \ldots, z_m)) = 2^m \int_{(\mathbb{R}^d \times S^{d-1})^m} g(z_1, \ldots, z_m) \prod_{k=1}^m h(\tilde{B}_k, n_k) \Lambda_{d-1}^{(m)}(d(z_1, n_1, \ldots, z_m, n_m)).
\]

Then (13) completes the proof of the theorem. \(\square\)

Corollary 4.1. Let \(m \geq 1\) be an integer. Let \(Z\) be a.s. a gentle set such that (12) holds
for all bounded Borel sets \(D_1, \ldots, D_m \subseteq \mathbb{R}^d\). Assume that \(\Lambda^{(m)}_{d-1} \cdot \times S^{d-1} \times \cdots \times S^{d-1}\) is
absolutely continuous with respect to \(\mathcal{H}^m\) with density \(\lambda_{d-1}\).

(a) Then

\[
\left(\prod_{k=1}^m t_k^{-1} \right) v^{(m)}(z_1, \ldots, z_m) H^{(m)}(z_1, t_1, \ldots, z_m, t_m) \mathcal{H}^m(d(z_1, \ldots, z_m)) \\
\to 2^m \Lambda^{(m)}_{d-1}(z_1, \ldots, z_m) \mathcal{H}^m(d(z_1, \ldots, z_m))
\]

as \((t_1, \ldots, t_m) \to (0^+, \ldots, 0^+)\), where

\[
H^{(m)} := H^{(m)}_{B_d^c, \ldots, B_d}
\]

is the \(m\)-point spherical contact distribution function of \(Z\).

(b) Let \(w_1, \ldots, w_m \in S^{d-1}\). Then

\[
\left(\prod_{k=1}^m t_k^{-1} \right) v^{(m)}(z_1, \ldots, z_m) H^{(m)}_{w_1, \ldots, w_m}(z_1, t_1, \ldots, z_m, t_m) \mathcal{H}^m(d(z_1, \ldots, z_m)) \\
\to 2^m \Lambda^{(m)}_{d-1}(z_1, \ldots, z_m) \int_{(S^{d-1})^m} \prod_{k=1}^m \langle -w_k, n_k \rangle^+ \mathcal{R}^{(m)}(z_1, \ldots, z_m, d(n_1, \ldots, n_m)) \\
\times \mathcal{H}^m(d(z_1, \ldots, z_m))
\]

as \((t_1, \ldots, t_m) \to (0^+, \ldots, 0^+)\), where

\[
H^{(m)}_{w_1, \ldots, w_m} := H^{(m)}_{[0, w_1], \ldots, [0, w_m]}
\]

is the \(m\)-point linear contact distribution function of \(Z\) with respect to \(w_1, \ldots, w_m\).

(c) Let \(w_1, \ldots, w_m \in S^{d-1}\). Then

\[
\left(\prod_{k=1}^m t_k^{-1} \right) \tilde{C}^{(m)}_{w_1, \ldots, w_m}(z_1, t_1, \ldots, z_m, t_m) \mathcal{H}^m(d(z_1, \ldots, z_m)) \\
\to 2^m \Lambda^{(m)}_{d-1}(z_1, \ldots, z_m) \int_{(S^{d-1})^m} \prod_{k=1}^m \langle -w_k, n_k \rangle^+ \mathcal{R}^{(m)}(z_1, \ldots, z_m, d(n_1, \ldots, n_m)) \\
\times \mathcal{H}^m(d(z_1, \ldots, z_m))
\]

as \((t_1, \ldots, t_m) \to (0^+, \ldots, 0^+)\), where

\[
\tilde{C}^{(m)}_{w_1, \ldots, w_m}(z_1, t_1, \ldots, z_m, t_m) := v^{(m)}(z_1, \ldots, z_m) H^{(m)}_{[0, w_1], \ldots, [0, w_m]}(z_1, t_1, \ldots, z_m, t_m) \\
= P(z_1 \notin Z, z_1 + t_1 w_1 \in Z, \ldots, z_m \notin Z, z_m + t_m w_m \in Z).
\]

In case \(m = 2\) and \(Z\) is a germ-grain model with convex grains, Corollary 4.1(a) coincides
with Theorem 3.1 in [1].
References

