Embeddings of graphs into their complements in transitive tournaments

Agnieszka Görlich

Abstract

In [1] the authors have proved a basic result concerning a packing of a simple graph G of order n into the complete graph K_n: if $|E(G)| \leq n - 2$, then there exists such a packing.

A packing of a simple graph G in K_n means exactly the same as an embedding of a graph G into its complement in K_n. Let \overrightarrow{T}_n be a transitive tournament on n vertices. Packing and embedding problems in \overrightarrow{T}_n are not equivalent. It is known [2] that for any directed acyclic graph \overrightarrow{G} of order n and of size not greater than $\frac{3}{4}(n - 1)$ two directed graphs isomorphic to \overrightarrow{G} are arc disjoint subgraphs of \overrightarrow{T}_n.

We consider a problem of an embedding of a graph \overrightarrow{G} into its complement in \overrightarrow{T}_n. We show that any directed acyclic graph \overrightarrow{G} of size not greater than $\frac{2}{3}(n - 1)$ is embeddable into its complement in \overrightarrow{T}_n. Moreover, this bound is generally the best possible.

References

Irregularity strength of regular graphs - linearity in \(n/d \)

Jakub Przybyło

Abstract

Let \(G \) be a simple graph with no isolated edges and at most one isolated vertex. For a positive integer \(w \), a \(w \)-weighting of \(G \) is a map \(f : E(G) \rightarrow \{1, 2, \ldots, w\} \). An irregularity strength of \(G \), \(s(G) \), is the smallest \(w \) such that there is a \(w \)-weighting of \(G \) for which \(\sum_{e:u \in e} f(e) \neq \sum_{e:v \in e} f(e) \) for all pairs of different vertices \(u, v \in V(G) \). A conjecture by Faudree and Lehel says that there is a constant \(c \) such that \(s(G) \leq \frac{n}{d} + c \) for each \(d \)-regular graph \(G \), \(d \geq 2 \). We show that it is true in the following form \(s(G) \leq c_1 \frac{n}{d} + c_2 \), where \(c_1 = 16 \) and \(c_2 = 6 \). Consequently, we improve the results by Frieze, Gould, Karoński and Pfender (in some cases by a \(\log n \) factor) in this area, as well as the recent result by Cuckler and Lazebnik. A sketch of the proof will be presented.