Strong and weak error estimates for the solutions of elliptic partial differential equations with random coefficients

Julia Charrier
ENS Cachan Bretagne/ INRIA Rennes

20 september 2010
1. Equation

2. Approximation of a

3. Strong convergence of u_N to u
 - Strong convergence of a_N to a
 - Strong convergence of u_N to u

4. Weak convergence of u_N to u
 - Result
 - Sketch of the proof

5. Examples
 - The 1D exponential covariance case
 - The analytic covariance case
• D a bounded C^2 domain of \mathbb{R}^d, (Ω, \mathcal{F}, P) a probability space

• $a : \Omega \times D \to \mathbb{R}$ a lognormal homogeneous random field
 \[a(\omega, x) = e^{g(\omega, x)} \] where g is a gaussian homogeneous mean-free random field with $\text{cov}[g](x, y) = k(\|x - y\|), \ k \in C^{0,1}(\mathbb{R})$

• We look for $u : \Omega \times D \to \mathbb{R}$ such that for almost every ω

\[
- \nabla.(a(\omega, .)\nabla u(\omega, .)) = f(x) \text{ on } D \tag{1} \\
\]
 \[u(\omega, .) = 0 \text{ on } \partial D. \]
Proposition

For almost all ω, $a(\omega, .) \in C^{0,\alpha}$ for any $\alpha < \frac{1}{2}$.
Proposition

For almost all ω, $a(\omega, .) \in C^{0,\alpha}$ for any $\alpha < \frac{1}{2}$.

Proposition

We define for almost all ω:

$$a_{\text{min}}(\omega) = \min_{x \in D} a(\omega, x) \text{ and } a_{\text{max}}(\omega) = \max_{x \in D} a(\omega, x).$$

Then $\frac{1}{a_{\text{min}}(\omega)} \in L^p(\Omega)$ and $a_{\text{max}}(\omega) \in L^p(\Omega)$ $\forall p > 0$.
Proposition

For almost all ω, $a(\omega, .) \in C^{0,\alpha}$ for any $\alpha < \frac{1}{2}$.

Proposition

We define for almost all ω:

$$a_{\min}(\omega) = \min_{x \in D} a(\omega, x) \text{ and } a_{\max}(\omega) = \max_{x \in D} a(\omega, x).$$

Then $\frac{1}{a_{\min}(\omega)} \in L^p(\Omega)$ and $a_{\max}(\omega) \in L^p(\Omega)$ $\forall p > 0$.

Proposition

The equation 1 admits a unique solution $u \in L^p(\Omega, H^1_0(D))$, $\forall p > 0$.
Approximation of \(a \)

→ **Approximate \(a \) using a finite number of random variables** is the first step of several numerical methods: stochastic galerkin methods, stochastic collocation method...
Approximation of a

→ **Approximate a using a finite number of random variables** is the first step of several numerical methods: stochastic galerkin methods, stochastic collocation method...

→ We denote by g_N the truncated Karhunen-Loève expansion of g at order N:

\[
g_N(\omega, x) = \sum_{n=1}^{N} \sqrt{\lambda_n} b_n(x) Y_n(\omega)
\]
Approximation of a

\rightarrow **Approximate a using a finite number of random variables** is the first step of several numerical methods: stochastic galerkin methods, stochastic collocation method...

\rightarrow We denote by g_N the truncated Karhunen-Loève expansion of g at order N:

$$g_N(\omega, x) = \sum_{n=1}^{N} \sqrt{\lambda_n} b_n(x) Y_n(\omega)$$

The (λ_n, b_n) are the eigenpairs of the Hilbert-Schmidt operator:

$$f \in L^2(D) \quad \mapsto \quad \left(x \mapsto \int_D \text{cov}[g](x, y)f(y)dy \right) \in L^2(D)$$
Approximation of a

→ Approximate a using a finite number of random variables is the first step of several numerical methods: stochastic galerkin methods, stochastic collocation method...

→ We denote by g_N the truncated Karhunen-Loève expansion of g at order N:

$$g_N(\omega, x) = \sum_{n=1}^{N} \sqrt{\lambda_n} b_n(x) Y_n(\omega)$$

The (λ_n, b_n) are the eigenpairs of the Hilbert-Schmidt operator:

$$f \in L^2(D) \quad \mapsto \quad \left(x \mapsto \int_D \text{cov}[g](x, y) f(y) dy \right) \in L^2(D)$$

The $(b_n)_n$ and the $(Y_n)_n$ are orthonormal.
Approximation of a

→ **Approximate a using a finite number of random variables** is the first step of several numerical methods: stochastic galerkin methods, stochastic collocation method...

→ We denote by g_N the truncated Karhunen-Loève expansion of g at order N:

$$g_N(\omega, x) = \sum_{n=1}^{N} \sqrt{\lambda_n} b_n(x) Y_n(\omega)$$

The (λ_n, b_n) are the eigenpairs of the Hilbert-Schmidt operator:

$$f \in L^2(D) \quad \mapsto \quad \left(x \mapsto \int_{D} \text{cov}[g](x, y)f(y)dy \right) \in L^2(D)$$

The $(b_n)_n$ and the $(Y_n)_n$ are orthonormal.

Remark: Here the $(Y_n)_{n \geq 1}$ are independent because g is gaussian.
The following convergence results are well-known:

\[g_N \xrightarrow{L^2(\Omega \times D)} g \text{ and, by Mercer theorem } \sup_{x \in D} \|g_N - g\|_{L^2(\Omega)} \xrightarrow{N \to +\infty} 0. \]
The following convergence results are well-known:

\[g_N \xrightarrow{L^2(\Omega \times D)} g \quad \text{and, by Mercer theorem} \quad \sup_{x \in D} \|g_N - g\|_{L^2(\Omega)} \xrightarrow{N \to +\infty} 0. \]

→ We define the approximation \(a_N \) of \(a \):

\[a_N(\omega, x) = e^{g_N(\omega, x)} = e^{\sum_{n=1}^{N} \sqrt{\lambda_n} b_n(x) Y_n(\omega)}. \]
The following convergence results are well-known:
\[g_N \xrightarrow{L^2(\Omega \times D)} g \text{ and, by Mercer theorem } \sup_{x \in D} \|g_N - g\|_{L^2(\Omega)} \xrightarrow{N \to +\infty} 0. \]

→ We define the approximation \(a_N \) of \(a \):
\[a_N(\omega, x) = e^{g_N(\omega, x)} = e^{\sum_{n=1}^{N} \sqrt{\lambda_n} b_n(x) Y_n(\omega)}. \]

→ We define the approximation \(u_N \) of \(u \) as the solution of:
\[-\nabla.(a_N(\omega, .) \nabla u_N(\omega, .)) = f(x) \text{ on } D \]
\[u_N(\omega, .) = 0 \text{ on } \partial D. \]
The following convergence results are well-known:

\[g_N \xrightarrow{L^2(\Omega \times D)} g \] and, by Mercer theorem

\[\sup_{x \in D} \| g_N - g \|_{L^2(\Omega)} \xrightarrow{N \to +\infty} 0. \]

→ We define the approximation \(a_N \) of \(a \):

\[a_N(\omega, x) = e^{g_N(\omega, x)} = e^{\sum_{n=1}^{N} \sqrt{\lambda_n} b_n(x) Y_n(\omega)}. \]

→ We define the approximation \(u_N \) of \(u \) as the solution of:

\[- \nabla.(a_N(\omega, .) \nabla u_N(\omega, .)) = f(x) \text{ on } D\]
\[u_N(\omega, .) = 0 \text{ on } \partial D. \]

→ Our aim is to estimate the error commited by approximating \(u \) by \(u_N \).
Strong convergence of a_N to a

Assumptions:

- the eigenfunctions b_n are continuously differentiable with $\|b_n\|_\infty \leq C$ and $\|b'_n\|_\infty \leq C n^a$
- $\sum_{n \geq 1} \lambda_n n^b < +\infty$ for some $b > 0$.
Strong convergence of a_N to a

Assumptions:

- the eigenfunctions b_n are continuously differentiable with $\|b_n\|_\infty \leq C$ and $\|b'_n\|_\infty \leq Cn^a$
- $\sum_{n \geq 1} \lambda_n n^b < +\infty$ for some $b > 0$.

Strong convergence of g_N to g

- $\forall p > 0$, $\forall 0 < \alpha < \min\{b, 2a\}$

$$\|g_N - g\|_{L^p(\Omega, C^0(D))} \leq A_{\alpha, p} \sqrt{\sum_{n > N} \lambda_n n^\alpha} \quad \forall N \in \mathbb{N}.$$
Strong convergence of a_N to a

Assumptions:

- the eigenfunctions b_n are continuously differentiable with
 \[\|b_n\|_\infty \leq C \text{ and } \|b'_n\|_\infty \leq Cn^a \]
- \[\sum_{n \geq 1} \lambda_n n^b < +\infty \text{ for some } b > 0. \]

Strong convergence of g_N to g

- $\forall p > 0, \forall 0 < \alpha < \min\{b, 2a\}$
 \[
 \|g_N - g\|_{L^p(\Omega, C^0(D))} \leq A_{\alpha, p} \sqrt{\sum_{n > N} \lambda_n n^{\alpha}} \quad \forall N \in \mathbb{N}.
 \]

- For almost all ω, $g_N \xrightarrow{C^0(D)} g$ and so $a_N \xrightarrow{C^0(D)} a$ as $N \to +\infty$.
Strong convergence of a_N to a

Assumptions:

- the eigenfunctions b_n are continuously differentiable with $\|b_n\|_\infty \leq C$ and $\|b'_n\|_\infty \leq Cn^a$
- $\sum_{n \geq 1} \lambda_n n^b < +\infty$ for some $b > 0$.

Strong convergence of g_N to g

- $\forall p > 0$, $\forall 0 < \alpha < \min\{b, 2a\}$

\[
\|g_N - g\|_{L^p(\Omega, C^0(D))} \leq A_{\alpha,p} \sqrt{\sum_{n > N} \lambda_n n^\alpha} \quad \forall N \in \mathbb{N}.
\]

- For almost all ω, $g_N \overset{C^0(D)}{\longrightarrow} g$ and so $a_N \overset{C^0(D)}{\longrightarrow} a$ as $N \to +\infty$.
- We define $a_N^{\min}(\omega) = \min_{x \in D} a_N(\omega, x)$ and $a_N^{\max}(\omega) = \max_{x \in D} a_N(\omega, x)$ a.s.

Then for all $p > 0$,

\[
\left\| \frac{1}{a_N^{\min}} \right\|_{L^p(\Omega)} \leq B_p \quad \text{and} \quad \|a_N^{\max}\|_{L^p(\Omega)} \leq B_p \quad \forall N \in \mathbb{N}.
\]
Strong convergence of u_N to u

$\forall p > 0$, $\forall 0 < \alpha < \min \{ b, 2a \}$

$$\| a_N - a \|_{L^p(\Omega, C^0(D))} \leq C_{\alpha, p} \sqrt{\sum_{n>N} \lambda_n n^\alpha} \quad \forall N \in \mathbb{N}.$$
Strong convergence of u_N to u

$\forall p > 0, \forall 0 < \alpha < \min\{b, 2a\}$

$$\|a_N - a\|_{L^p(\Omega, C^0(D))} \leq C_{\alpha, p} \sqrt{\sum_{n>N} \lambda_n n^\alpha} \quad \forall N \in \mathbb{N}.$$
Weak convergence of u_N to u

Proposition

There exists a constant C such that for any $\varphi \in C^4(\mathbb{R}, \mathbb{R})$ whose derivatives are bounded by a constant C_{φ}

$$\left\| \mathbb{E} \omega [\varphi(u) - \varphi(u_N)] \right\|_{H_0^1} \leq CC_{\varphi}\sum_{n \geq N} \lambda_n.$$
Weak convergence of u_N to u

Proposition

There exists a constant C such that for any $\varphi \in C^4(\mathbb{R}, \mathbb{R})$ whose derivatives are bounded by a constant C_φ

\[||E_\omega[\varphi(u) - \varphi(u_N)]||_{H_0^1} \leq CC_\varphi \sum_{n> N} \lambda_n. \]

Remark: The weak order is twice the strong order.
Weak convergence of u_N to u

Proposition

There exists a constant C such that for any $\varphi \in C^4(\mathbb{R}, \mathbb{R})$ whose derivatives are bounded by a constant C_φ

$$\|E_\omega[\varphi(u) - \varphi(u_N)]\|_{H^1_0} \leq CC_\varphi \sum_{n> N} \lambda_n.$$

Remark: The weak order is twice the strong order.

Sketch of the proof: We recall that: $u_N(\omega, x) = u_N(Y_1(\omega), ..., Y_N(\omega), x)$ (Doob-Dynkin lemma). For any multi-index $\alpha \in \mathbb{N}^N$ with finite support

$$\left\| \frac{\partial^\alpha u_N(y, x)}{\partial y^\alpha} \right\|_{H^1_0(D)} \leq k_{|\alpha|} \sqrt{\frac{a_N^{\text{max}}(y)}{a_N^{\text{min}}(y)}} \| u_N \|_{H^1_0} C^{|\alpha|} \prod_{i \in \mathbb{N}} \sqrt{\lambda_i^\alpha}.$$
Formally, in the particular case of the expected value, we have:

\[u(\omega, x) - u_N(\omega, x) = u(Y_1(\omega), \ldots, Y_N(\omega), Y_{N+1}(\omega), \ldots, x) - u(Y_1(\omega), \ldots, Y_N(\omega), 0, \ldots, x) \]
Formally, in the particular case of the expected value, we have:

\[
\begin{align*}
 u(\omega, x) &- u_N(\omega, x) \\
 &= u(Y_1(\omega), \ldots, Y_N(\omega), Y_{N+1}(\omega), \ldots, x) - u(Y_1(\omega), \ldots, Y_N(\omega), 0, \ldots, x) \\
 &= \sum_{i>N} \frac{\partial u}{\partial y_i}(Y_1(\omega), \ldots, Y_N(\omega), 0, \ldots, x) Y_i(\omega)
\end{align*}
\]
Formally, in the particular case of the expected value, we have:

\[u(\omega, x) - u_N(\omega, x) \]
\[= u(Y_1(\omega), ..., Y_N(\omega), Y_{N+1}(\omega), ..., x) - u(Y_1(\omega), ..., Y_N(\omega), 0, ..., x) \]
\[= \sum_{i>N} \frac{\partial u}{\partial y_i}(Y_1(\omega), ..., Y_N(\omega), 0, ..., x)Y_i(\omega) \]
\[+ \frac{1}{2} \sum_{i\neq j>N} \frac{\partial^2 u}{\partial y_i \partial y_j}(Y_1(\omega), ..., Y_N(\omega), 0, ..., x)Y_i(\omega)Y_j(\omega) \]
Formally, in the particular case of the expected value, we have:

\[u(\omega, x) - u_N(\omega, x) \]

\[= u(Y_1(\omega), \ldots, Y_N(\omega), Y_{N+1}(\omega), \ldots, x) - u(Y_1(\omega), \ldots, Y_N(\omega), 0, \ldots, x) \]

\[= \sum_{i > N} \frac{\partial u}{\partial y_i} (Y_1(\omega), \ldots, Y_N(\omega), 0, \ldots, x) Y_i(\omega) \]

\[+ \frac{1}{2} \sum_{i \neq j > N} \frac{\partial^2 u}{\partial y_i \partial y_j} (Y_1(\omega), \ldots, Y_N(\omega), 0, \ldots, x) Y_i(\omega) Y_j(\omega) \]

\[+ \frac{1}{2} \sum_{i > N} \frac{\partial^2 u}{\partial y_i^2} (Y_1(\omega), \ldots, Y_N(\omega), 0, \ldots, x) Y_i(\omega)^2 + \ldots \]
Formally, in the particular case of the expected value, we have:

\[
\begin{align*}
 u(\omega, x) - u_N(\omega, x) & = u(Y_1(\omega), \ldots, Y_N(\omega), Y_{N+1}(\omega), \ldots, x) - u(Y_1(\omega), \ldots, Y_N(\omega), 0, \ldots, x) \\
 & = \sum_{i > N} \frac{\partial u}{\partial y_i}(Y_1(\omega), \ldots, Y_N(\omega), 0, \ldots, x) Y_i(\omega) \\
 & \quad + \frac{1}{2} \sum_{i \neq j > N} \frac{\partial^2 u}{\partial y_i \partial y_j}(Y_1(\omega), \ldots, Y_N(\omega), 0, \ldots, x) Y_i(\omega) Y_j(\omega) \\
 & \quad + \frac{1}{2} \sum_{i > N} \frac{\partial^2 u}{\partial y_i^2}(Y_1(\omega), \ldots, Y_N(\omega), 0, \ldots, x) Y_i(\omega)^2 + \ldots
\end{align*}
\]

The independence of the \(Y_i \) yields:

\[
\mathbb{E}[u - u_N](x) = 0 + \frac{1}{2} \sum_{i > N} \mathbb{E} \left[\frac{\partial^2 u}{\partial y_i^2}(Y_1(\omega), \ldots, Y_N(\omega), 0, \ldots, x) \right] + \ldots
\]
Example: the 1D exponential covariance case

We take \(D = (0, 1) \) and \(\text{cov}[g](x, y) = \sigma^2 e^{-\frac{|x-y|}{l}} \) where \(l \) is the correlation length. Then we have analytic expressions for the eigenvalues \(\lambda_n \) and the eigenfunctions \(b_n \), in particular:

- \(\lambda_n \xrightarrow{n \to +\infty} \frac{2\sigma^2}{\pi^2 n^2} \)
- \(\forall n \in \mathbb{N}, \|b_n\|_{\infty} \leq C \) and \(\|b'_n\|_{\infty} \leq Cn. \)
Example: the 1D exponential covariance case

We take \(D = (0, 1) \) and \(\text{cov}[g](x, y) = \sigma^2 e^{-\frac{|x-y|}{l}} \) where \(l \) is the correlation length. Then we have analytic expressions for the eigenvalues \(\lambda_n \) and the eigenfunctions \(b_n \), in particular:

- \(\lambda_n \xrightarrow{n \to +\infty} \frac{2\sigma^2}{l^2 n^2} \)
- \(\forall n \in \mathbb{N}, \|b_n\|_\infty \leq C \) and \(\|b'_n\|_\infty \leq Cn. \)

Proposition (Strong convergence result)

\[\forall p > 0, \forall 0 < \alpha < 1 \]

\[\|u_N - u\|_{L^p(\Omega, H^1_0(D))} \leq F_{\alpha, p} N^{\frac{\alpha-1}{2}} \quad \forall N \in \mathbb{N}. \]
Example: the 1D exponential covariance case

We take $D = (0, 1)$ and $\text{cov}[g](x, y) = \sigma^2 e^{-\frac{|x-y|}{l}}$ where l is the correlation length. Then we have analytic expressions for the eigenvalues λ_n and the eigenfunctions b_n, in particular:

- $\lambda_n \sim \frac{2\sigma^2}{\pi^2 n^2}
- \forall n \in \mathbb{N}, \|b_n\|_{\infty} \leq C$ and $\|b'_n\|_{\infty} \leq Cn.$

Proposition (Strong convergence result)

$\forall p > 0, \forall 0 < \alpha < 1$

$$\|u_N - u\|_{L^p(\Omega, H^1_0(D))} \leq F_{\alpha, p} N^{\frac{\alpha-1}{2}} \quad \forall N \in \mathbb{N}.$$

Proposition (Weak convergence result)

For any $\varphi \in C^4(\mathbb{R}, \mathbb{R})$ whose derivatives are bounded by a constant C_φ

$$\|\mathbb{E}_\omega [\varphi(u) - \varphi(u_N)]\|_{H^1_0(D)} \leq C_\varphi \frac{C}{N}.$$
\(a_N(\omega, x) \) for different values of \(N \)

\[\mathbb{E}[u_N(x)] \] for different values of \(N \)

here we have \(\| E[u - u_N] \|_{L^2(D)} \approx \frac{c}{N^{2.7}} \).
$\mathbb{E}[u_N(x)]$ for different values of N, in the case where $l = 0.1$, $\sigma = 1$.
Example: the analytic covariance case

We suppose that $\text{cov}[g]$ is analytic on D^2, then we have

Theorem (Schwab, Todor)

- $\lambda_n \leq c_1 e^{-c_2 n^{1/d}} \quad \forall n \in \mathbb{N}$

- for any $s > 0$ there exists a constant c_s such that,

\[
\|b_n\|_\infty \leq c_s |\lambda_n|^{-s} \quad \text{and} \quad \|b'_n\|_\infty \leq c_s |\lambda_n|^{-s} \quad \forall n \in \mathbb{N}.
\]

We have then strong and weak convergence results, analogous to the previous results.
Proposition (Strong convergence result)

For any $0 < s < \frac{1}{2}$, and $p > 0$

$$\| u - u_N \|_{L^p(\Omega,H^1_0(D))} \leq H_{s,p} \sqrt{\sum_{n>N} \lambda_n^{1-2s}} \quad \forall N \in \mathbb{N}$$

therefore

$$\| u - u_N \|_{L^p(\Omega,H^1_0(D))} \leq l_{d,s,p} N^{\frac{d-1}{2d}} e^{-\frac{c_2(1-2s)}{2}} N^{1/d} \quad \forall N \in \mathbb{N}$$
Proposition (Weak convergence result)

For any $0 < s < \frac{1}{2}$, for all $\varphi \in C^4(\mathbb{R}, \mathbb{R})$ whose derivatives are bounded by a constant C_φ, we have:

$$\|E[\varphi(u_N) - \varphi(u)]\|_{H^1_0(D)} \leq J_s C_\varphi \sum_{n>N} \chi_n^{1-2s} \quad \forall N \in \mathbb{N}$$

therefore

$$\|E[\varphi(u_N) - \varphi(u)]\|_{H^1_0(D)} \leq K_{d,s} C_\varphi N^{\frac{d-1}{d}} e^{-c_2(1-2s)N^{1/d}} \quad \forall N \in \mathbb{N}. $$